Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.07.22278739

ABSTRACT

Background: COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics over the last 100 years. Sequencing is playing an important role in monitoring the evolution of the virus, including the detection of new viral variants. This study describes the genomic epidemiology of SARS-CoV-2 infections in The Gambia. Methods: Nasopharyngeal and/or oropharyngeal swabs collected from suspected cases and travellers were tested for SARS-CoV-2 using standard RT-PCR methods. SARS-CoV-2 positive samples were sequenced following standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and lineages assigned using Pangolin. Findings: Between March 2020 to January 2022, there were almost 12,000 SARS-CoV-2 confirmed cases distributed into four waves, each of them lasting between 4 weeks and 4 months, with more cases during the rainy seasons (July- October). As shown by the 1643 sequenced samples, each wave occurred after new viral variants and/or lineages were introduced in The Gambia, generally those already established in Europe and/or in other African countries. Local transmission was higher during the first and third wave, with mostly B.1.416/Senegal/Gambian lineage and AY.34.1/Delta subtype, respectively. The second wave was driven by two variants, namely Alpha and Eta and B.1.1.420 lineage. The Omicron/fourth wave was the shortest. Interpretation: Efficient surveillance, including strengthening entry points and screening asymptomatic individuals especially during the rainy seasons would be important to promptly detect and control future waves in The Gambia and the subregion.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.30.070771

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive-sense single stranded RNA virus with high human transmissibility. This study generated Whole Genome data to determine the origin and pattern of transmission of SARS-CoV-2 from the first six cases tested in The Gambia. Total RNA from SARS-CoV-2 was extracted from inactivated nasopharyngeal-oropharyngeal swabs of six cases and converted to cDNA following the ARTIC COVID-19 sequencing protocol. Libraries were constructed with the NEBNext ultra II DNA library prep kit for Illumina and Oxford Nanopore Ligation sequencing kit and sequenced on Illumina MiSeq and Nanopore GridION, respectively. Sequencing reads were mapped to the Wuhan reference genome and compared to eleven other SARS-CoV-2 strains of Asian, European and American origins. A phylogenetic tree was constructed with the consensus genomes for local and non-African strains. Three of the Gambian strains had a European origin (UK and Spain), two strains were of Asian origin (Japan). In The Gambia, Nanopore and Illumina sequencers were successfully used to identify the sources of SARS-CoV-2 infection in COVID-19 cases.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL